337P日本欧洲亚洲大胆艺术图,日本一区二区在线视频,GOGOGO免费视频观看高清国语

老化測試設備

咨詢熱線

18566398802
首頁 > 標準大全 > ASTM G172-19標準詳情
相關測試儀器

ASTM G172-19

(該標準已經被ASTM G172-19替代)
  本頁面標準信息均來源于網絡收集,或由參與標準制定的供應商提供,只作為參考使用。我們愿意和您交流ASTM G172-19標準細節信息或ASTM G172-19測試方法,歡迎致電【18566398802】

ASTM G172-19標準介紹

ASTM G172 加速運行的壽命數據的統計分析指南

ASTM G172-19發行信息

標準號ASTM G172-19

中文名加速運行的壽命數據的統計分析指南

英文名 Standard Guide for Statistical Analysis of Accelerated Service Life Data

發布日期2019

實施日期

廢止日期無

中國標準分類號A41

國際標準分類號03.120.30

發布單位US-ASTM

ASTM G172-19適用范圍

The nature of accelerated service life estimation normally requires that stresses higher than those experienced during service conditions are applied to the material being evaluated. For non-constant use stress, such as experienced by time varying weather outdoors, it may in fact be useful to choose an accelerated stress fixed at a level slightly lower than (say 90 % of) the maximum experienced outdoors. By controlling all variables other than the one used for accelerating degradation, one may model the expected effect of that variable at normal, or usage conditions. If laboratory accelerated test devices are used, it is essential to provide precise control of the variables used in order to obtain useful information for service life prediction. It is assumed that the same failure mechanism operating at the higher stress is also the life determining mechanism at the usage stress. It must be noted that the validity of this assumption is crucial to the validity of the final estimate.

Accelerated service life test data often show different distribution shapes than many other types of data. This is due to the effects of measurement error (typically normally distributed), combined with those unique effects which skew service life data towards early failure time (infant mortality failures) or late failure times (aging or wear-out failures). Applications of the principles in this guide can be helpful in allowing investigators to interpret such data.

The choice and use of a particular acceleration model and life distribution model should be based primarily on how well it fits the data and whether it leads to reasonable projections when extrapolating beyond the range of data. Further justification for selecting models should be based on theoretical considerations.

Note 28212;Accelerated service life or reliability data analysis packages are becoming more readily available in common computer software packages. This makes data reduction and analyses more directly accessible to a growing number of investigators. This is not necessarily a good thing as the ability to perform the mathematical calculation, without the fundamental understanding of the mechanics may produce some serious errors. See Ref (1).

1.1 This guide describes general statistical methods for analyses of accelerated service life data. It provides a common terminology and a common methodology for calculating a quantitative estimate of functional service life.

1.2 This guide covers the application of two general models for determining service life distribution at usage condition. The Arrhenius model serves as a general model where a single stress variable, specifically temperature, affects the service life. It also covers the Eyring Model for applications where multiple stress variables act simultaneously to affect the service life.

1.3 This guide emphasizes the use of the Weibull life distribution and is written to be used in combination with Guide G166.

1.4 The uncertainty and reliability of every accelerated service life model becomes more critical as the number of stress variables increases and the extent of extrapolation from the accelerated stress levels to the usage level increases, or both. The models and methodology used in this guide are to provide examples of data analysis techniques only. The fundamental requirements of proper variable selection and measurement must still be met by the users for a meaningful model to result.

1.5 This international standard was developed in accordance with internationally recognized principles on standardization established in the Decision on Principles for the Development of International Standards, Guides and Recommendations issued by the World Trade Organization Technical Barriers to Trade (TBT) Committee.

1.1本指南描述了加速使用壽命數據分析的一般統計方法。它為計算功能使用壽命的定量估計提供了通用術語和通用方法。

1.2本指南涵蓋了確定使用條件下使用壽命分布的兩種通用模型的應用。Arrhenius模型作為一般模型,其中單個應力變量,特別是溫度,影響使用壽命。它還涵蓋了Eyring模型,適用于多個應力變量同時作用以影響使用壽命的應用。

1.3本指南強調使用威布爾壽命分布,并與指南G166結合使用。

1.4隨著應力變量數量的增加以及從加速應力水平到使用水平的外推范圍的增加,或兩者同時增加,每個加速使用壽命模型的不確定性和可靠性變得更加關鍵。本指南中使用的模型和方法僅提供數據分析技術的示例。用戶仍然必須滿足適當變量選擇和測量的基本要求,才能得到有意義的模型。

1.5本國際標準是根據世界貿易組織技術性貿易壁壘(TBT)委員會發布的《關于制定國際標準、指南和建議的原則的決定》中確立的國際公認標準化原則制定的。

溫馨提醒:本ASTM G172-19可能存在更新的版本,建議尋找ASTM G172-19的發行商確認。

  • 
    
  • 
    
    主站蜘蛛池模板: 石阡县| 本溪| 天津市| 邢台市| 奉贤区| 波密县| 四子王旗| 海丰县| 吕梁市| 枞阳县| 九台市| 横峰县| 伊春市| 墨江| 五原县| 泽库县| 大埔县| 连云港市| 昭苏县| 漳浦县| 桦甸市| 上林县| 炎陵县| 皮山县| 田东县| 库车县| 乌拉特中旗| 新乡县| 金湖县| 南川市| 尚志市| 通河县| 公主岭市| 潼南县| 临城县| 讷河市| 抚宁县| 从江县| 墨竹工卡县| 舟曲县| 陆川县|